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Distilling Knowledge by Mimicking Features
Guo-Hua Wang, Yifan Ge, and Jianxin Wu, Member, IEEE

Abstract—Knowledge distillation (KD) is a popular method to train efficient networks (“student”) with the help of high-capacity networks
(“teacher”). Traditional methods use the teacher’s soft logits as extra supervision to train the student network. In this paper, we argue that
it is more advantageous to make the student mimic the teacher’s features in the penultimate layer. Not only the student can directly learn
more effective information from the teacher feature, feature mimicking can also be applied for teachers trained without a softmax layer.
Experiments show that it can achieve higher accuracy than traditional KD. To further facilitate feature mimicking, we decompose a feature
vector into the magnitude and the direction. We argue that the teacher should give more freedom to the student feature’s magnitude, and
let the student pay more attention on mimicking the feature direction. To meet this requirement, we propose a loss term based on
locality-sensitive hashing (LSH). With the help of this new loss, our method indeed mimics feature directions more accurately, relaxes
constraints on feature magnitudes, and achieves state-of-the-art distillation accuracy. We provide theoretical analyses of how LSH
facilitates feature direction mimicking, and further extend feature mimicking to multi-label recognition and object detection.

Index Terms—Convolutional Neural Networks, Deep Learning, Knowledge Distillation, Image Classification, Object Detection.
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1 INTRODUCTION

R ECENTLY, deep learning has achieved remarkable success in
many visual recognition tasks. To deploy deep networks in

devices with limited resources, more and more efficient networks
have been proposed [1], [2]. Knowledge distillation (KD) [3] is a
popular method to train these efficient networks (named “student”)
with the help of high-capacity networks (named “teacher”).

Initial study of KD [3] used the softmax output of the teacher
network as the extra supervisory information for training the student
network. However, the output of a high-capacity network is not
significantly different from groundtruth labels. And, due to the
existence of the classifier layer, the softmax output contains less
information compared with the representation in the penultimate
layer. These issues hinder the performance of a student model. In
addition, it is difficult for KD to distill teacher models trained by
unsupervised or self-supervised learning [4], [5], [6], [7].

Feature distillation has received more and more attention
in recent years [8], [9], [10], [11]. However, previous works
only focused on distilling features in the middle layers [8] or
transforming the features [9]. Few have addressed the problem
of making the student directly mimic the teacher’s feature in the
penultimate layer. Distilling features in the middle layers suffers
from the different architectures between teacher and student, while
transforming the features may lose some information in the teacher.
We believe it is a better way to directly mimic the feature for
knowledge distillation, in which we only mimic the feature in the
penultimate layer. Compared with KD, it does not need the student
model to learn a classifier from the teacher. Feature mimicking
can be applied to a teacher trained by unsupervised, metric or
self-supervised learning, and can be easily used when the teacher
and student have different architectures. Furthermore, if the student
features are the same as the teacher’s, the classification accuracy
will surely be the same, too.
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Some reasons may explain why feature mimicking has not yet
been popular in the literature. First, previous work used the mean
squared loss (`2 loss) to distill features. In this paper, we decompose
a feature vector into the magnitude and the direction. The `2 loss
focuses on both magnitude and direction. But due to the different
capacities, the student cannot mimic the teacher in its entirety. In
fact, only the direction affects the classification result while the
magnitude mainly represents the confidence of prediction [12]. We
find that different networks often have different feature magnitudes
(cf. Table 2). That inspires us to give more freedom to the student
feature’s magnitude. One possible approach to tackle this problem
is to distill the feature after `2-normalization [9]. However, it will
lose all magnitude information about the teacher feature and make
the optimization difficult [13]. In this paper, we propose a loss term
which focuses on the feature direction and gives more freedom to
its magnitude, which alleviates the shortcomings of the `2 loss (cf.
Figure 3).

Second, when teacher and student features have different
dimensionalities, difficulty arises. To solve this problem, we split
the final fully connected (FC) layer of the student network into
two FC layers without non-linear activation in-between. The
dimensionality of the first FC layer matches that of the teacher
feature. The two FCs can be merged into one after training.
Hence, no extra parameter or computation is added in the student’s
architecture during inference.

Third, even though the feature structure of the student is the
same as that of the teacher, their feature space may misalign (cf.
Figure 2). If we have the freedom to rotate and rescale the student’s
feature space, it will align to the teacher’s feature space better.
Thanks to our two FC structure in the proposed feature mimicking
method, we demonstrate that the first FC layer can transform the
student’s feature space and make feature mimicking easier, which is
particularly important when the student network is initialized using
a pretrained model (i.e., the student has formed a basic feature
space to finetune rather than a random feature space).

Our contributions are as follows.

• We argue that directly mimicking features in the penul-
timate layer is advantageous for knowledge distillation.
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It produces better performance than distilling logits after
log-softmax (as in [3]). It can be applied when the teacher
and student have different architectures, while distilling
features in the middle layers cannot.

• We claim that the feature’s direction contains more effective
information than its magnitude, and we should allow more
freedom to the student feature’s magnitude. We propose a
loss term based on Locality-Sensitive Hashing (LSH) [14]
to meet this requirement, and theoretically show why LSH
fits this purpose.

• We propose a training strategy for mimicking features
in transfer learning. With a pretrained student, we first
transform its feature space to align to the teacher’s, then
finetune the student on the target dataset with our loss
function. Our method is flexible and handles multi-label
recognition well, while existing KD methods are difficult
to apply to multi-label problems.

Our feature mimicking framework achieves state-of-the-art results
on both single-label and multi-label recognition, and object
detection tasks.

The rest of this paper is organized as follows. First, we review
the related work in Section 2. Then, we introduce our method for
feature mimicking in Section 3, and mathematically analyze the
effectiveness of it in Section 4. Experimental results are reported
and analyzed in Section 5. Finally, Section 6 concludes this paper.

2 RELATED WORK

Knowledge distillation was first introduced in [3], which proposed
to use the teacher’s soft logits after log-softmax as extra supervision
to train the student. FitNet [8] is the first work to distill the
intermediate feature maps between teacher and student. Inspired by
this, a variety of other feature-based knowledge distillation methods
have been proposed. AT [15] transfers the teacher knowledge
to student by the spatial attention maps. AB [16] proposes a
knowledge transfer method via distillation of activation boundaries
formed by hidden neurons. FitNet, AT and AB focus on activation
maps of the middle layers, and it is difficult to apply them on cross-
architecture settings. SP [17] considers pairwise similarities of
different features instead of mimicking the teacher’s representation
space. FSP [18] computes the inner product between features from
two layers and treats it as the extra information to teach student.
FT [9] introduces a paraphraser to compress the teacher feature
and uses the translator located at the student network to extract the
student factors, then teaches the student by making student factors
mimic teacher’s compressed features. These methods transform
the teacher’s feature into other forms, which will lose some
information in teacher features. In contrast, feature mimicking
in the penultimate layer can apply on arbitrary teacher/student
combinations and carry all information from the teacher.

Recently, CRD [10] and SSKD [11] take advantage of con-
trastive learning and transfer the structural knowledge of the
teacher network to the student. In this paper, we argue that we can
also achieve state-of-the-art by only mimicking features without
explicitly considering the structural knowledge.

Object detection is a fundamental task in computer vision.
Several previous works study knowledge distillation on the object
detection task. ROI-mimic [19] mimics the features after ROI
pooling. Fine-grained [20] uses the ground truth bounding box to
generate the foreground mask and distill the foreground features
on the feature map. PAD [21] introduces the adaptive sample

weighting to improve these distillation methods. In this paper, we
will show that mimicking features in the penultimate layer works
better.

Locality-sensitive hashing (LSH) was first introduced in [22],
[23]. With the help of p-stable distributions, [14] extended the
algorithm to the `2 norm. With the rise of deep learning, hashing
methods were widely used in image retrieval [24], [25], [26], [27].
Most of them focused on how to learn good hash functions to
transform images into compact codes. Different from that, we
utilized LSH to help the student network to learn from the teacher
network. To the best of our knowledge, we are the first to propose
the use of LSH in distilling knowledge.

3 FEATURE MIMICKING FOR KNOWLEDGE DISTILLA-
TION

Figure 1 shows the pipeline of our method. Given an image x, the
teacher backbone network extracts feature ft, in which ft ∈ RDt
is the penultimate layer feature (after the global average pooling and
before the final classifier or detection head). The student backbone
network extracts feature fs. To make the dimensionalities of fs
and ft match, we add a linear embedding layer after the student
backbone. Section 3.1 will introduce this module in detail.

Three losses are used. Lc is the regular cross-entropy loss
between the student output and the ground truth label of x. Lmse
and Llsh are used to make the student feature mimic the teacher’s.
More details about these two losses can be found in Section 3.2.
More analyses are in Sections 3.3 and 3.4. During training,
modules with green boxes (student backbone, linear embedding
and classifier) in Figure 1 need to be learned by back-propagation.
Parameters in the teacher backbone and locality-sensitive hashing
will not change after initialization. Finally, Section 3.5 discusses
how to initialize our framework. We leave theoretical results for
feature mimicking to Section 4.

3.1 The linear embedding layer
When the dimensionality of the student’s feature is different from
that of the teacher’s, we add a linear embedding layer before the
student’s classifier layer. Assume the dimensionality of student’s
features and teacher’s are Ds and Dt, respectively, the embedding
layer is defined as

fc1s(f) = WT
1 f + b1 , (1)

where W1 ∈ RDs×Dt and b1 ∈ RDt . The main advantage of
this approach is that the embedding layer can be merged into the
classifier without adding parameters or computation post-training.
Assume the classifier is defined as

fc2s(f) = WT
2 f + b2 , (2)

where W2 ∈ RDt×C and b2 ∈ RC . Then, the final classifier for
student can be computed by

fcs(f) = fc2s(fc1s(f)) (3)

= (W1W2)Tf + (WT
2 b1 + b2) . (4)

fc1s and fc2s can be merged by setting the weights and bias for
the final classifier as W1W2 and WT

2 b1 + b2, respectively.
This linear embedding layer shares similar idea as FSKD [28].

FSKD adds a 1× 1 conv at the end of each block of the student
network and proves that the 1 × 1 conv can be merged into the
previous convolution layer. However, FSKD requires the teacher
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Figure 1. The pipeline of our method. We use a linear embedding layer to make sure the dimensionality of student’s feature is the same as that of the
teacher’s. But, this embedding layer will be absorbed post-training. (This figure is best viewed in color.)
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Figure 2. An illustration of the feature space misalignment issue. The
points denote the features, and different colors with different shapes
represent different classes. The student’s feature space needs to rotate
to align to the teacher’s. (This figure is best viewed in color.)

and student to share similar architectures, and adds more parameters
during training. Our method is more efficient and can be applied
with different teacher/student architectures.

Even when the dimensionality of the student’s feature is the
same as that of the teacher’s, the linear embedding layer may
still be necessary. Because the teacher and the student may have
significantly different network architectures, their feature spaces
may be misaligned. The teacher and the student feature spaces,
even when they encode the same semantic information, can still be
subject to differences caused by transformations such as rotation
and scaling. Figure 2 illustrates the feature space misalignment
issue. Assume the penultimate layer feature is denoted by f and the
classifier’s parameters are W and b, respectively. The prediction
can be computed by

p = WTf + b . (5)

Given any orthogonal matrix R, we have

p = WTRTRf + b (6)

= WT
∗ f∗ + b , (7)

where W∗ and f∗ are RW and Rf , respectively. That is, the
feature space can be rotated without changing the prediction.

Our linear embedding layer fc1s can learn any linear trans-
formation (such as the above rotation R) to align the student’s
feature space to that of the teacher’s. If we let the student mimic the
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Figure 3. An illustration of the LSH loss. fs and ft denote a student
and a teacher feature vector for the same input image, respectively. h
represents the hash function constraints. These constraints form a small
polyhedron (the shaded region) and θ is the maximum angle between any
two vectors in this polyhedron. Magnitudes of these features, however,
can alter with greater freedom.

teacher’s features directly without aligning their feature spaces, the
performance will be lower, especially when the student has been
pretrained. Experimental validation of the importance of feature
space alignment can be found in Section 5.3.

3.2 The LSH module
To mimic the teacher’s feature, Lmse and Llsh are used in our
framework. Lmse is defined as

Lmse =
1

nD

n∑
i=1

‖ft(xi)− fs(xi)‖22 , (8)

where ft(xi) and fs(xi) represent the teacher and student
features for the i-th image in the training set, and D denotes
the dimensionality of the feature (after the linear embedding fc1s).
Note that Lmse addresses both feature direction and magnitude.
On the contrary, we propose to use locality-sensitive hashing
(LSH) [14] to give the student more freedom with regard to its
magnitude, but let the student concentrate more on mimicking the
feature direction.

Figure 3 shows an illustration for Llsh. In our LSH module,
each hash function can be considered as a linear constraint. Many
constraints will divide the feature space into a lot of polyhedra,
and in general each polyhedron will be small. The LSH loss will
encourage fs and ft to fall into the same polyhedron. Hence, more
hash functions will result in smaller polyhedra, which in turn means
that the angle between ft and fs will be small (upper bounded
by θ in Figure 3, which is small itself because the polyhedron
is small compared to the feature magnitudes.) In short, the LSH
module encourages ft and fs to have similar directions, but relaxes
constraints on their magnitudes.
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LSH aims at hashing the points into bins by several hash
functions to ensure that, for each function, near points will fall into
the same bin with high probability. In our framework, we use the
hash family based on the Gaussian distribution which is a 2-stable
distribution, defined as

hw,b(f) =

⌊
wTf + b

r

⌋
, (9)

where f ∈ RD is the feature, w ∈ RD is a random vector whose
entries are sampled from a Guassian distribution, b is a real number
chosen uniformly from the range [0, r], r is the length of each bin,
and b·c is the floor function.

Our loss term Llsh encourages the student feature to fall into
the same bin as that of the teacher’s. According to the theory of
locality-sensitive hashing, for two vectors f1, f2, the probability
of collision decreases monotonically with the distance between f1

and f2. Therefore, hW ,b(ft) = hW ,b(fs) (which will result in a
low value of Llsh) is a necessary condition for ‖ft − fs‖2 = 0.
Hence, it is reasonable to force the student to mimic the teacher by
minimizing Llsh.

In our framework, we use N hash functions with the form in
Equation 9. The locality-sensitive hashing module will generate N
hash codes for each feature. 0 is used as the threshold to chop the
real line. Therefore, the LSH module can be implemented by a FC
layer and a signum function:

hW ,b(f) = sign(WTf + b) , (10)

sign(x) =

{
1, if x > 0;

0, otherwise ,
(11)

in which f ∈ RD is the feature, W ∈ RD×N is the weights whose
entries are sampled from a Guassian distribution and b ∈ RN is the
bias. Equation 10 generates N binary codes for teacher feature ft,
and the hash code for student feature is expected to be the same as
teacher’s. We enforce this requirement by learning a classification
problem, and the binary cross entropy loss is to be minimized, i.e.,

h = sign
(
WTft + b

)
, (12)

p = σ
(
WTfs + b

)
, (13)

Llsh = − 1

nN

n∑
i=1

N∑
j=1

[hj log pj + (1− hj) log(1− pj)] ,

(14)
where σ is the sigmoid function σ(x) = 1

1+exp(−x) , hj and pj
are the j-th entry of h and p, respectively.

Finally, inspired by [29], we only distill the features which the
teacher classifies correctly. To reduce the effect of randomness in
the locality-sensitive hashing module, the average of the last 10
epochs’ models during training is used as our final model.

3.3 Experimental analysis
We use experiments to demonstrate the advantage of giving the
student more freedom to the feature magnitude and making it focus
on mimicking the feature direction.

Table 1 shows the experimental results. The models vgg13 and
vgg8 share similar architectures, while ResNet50 and MobileNetV2
have different architectures. “CE” denotes training the student by
only the cross entropy loss without a teacher. We find that ‖fs‖2

Table 1
The difference between teacher features and student features. The

statistics were estimated average values on the training and testing sets
of CIFAR-100. ‖ft‖2 and ‖fs‖2 denote the 2-norm of teacher and

student features, respectively. θ represents the average angle between
them. Acc@1 is the accuracy (%) of the student model.

Teacher vgg13 ResNet50
Student vgg8 MobileNetV2
dataset train test train test

‖ft‖2 12.64 11.83 15.52 15.03

CE
‖fs‖2 16.50 16.16 16.64 16.33
θ 69.49° 68.00° 90.09° 90.07°

Acc@1 99.19 70.72 90.31 64.36

`2 + CE
‖fs‖2 12.53 12.06 13.82 13.59
θ 26.86° 29.90° 32.04° 33.25°

Acc@1 98.26 72.33 89.07 65.73

LSH + CE
‖fs‖2 24.74 23.73 9.69 9.60
θ 28.22° 31.00° 31.28° 32.29°

Acc@1 97.60 72.69 84.11 67.02

LSH+`2+CE
‖fs‖2 15.22 14.50 9.94 9.83
θ 25.43° 28.99° 29.73° 30.80°

Acc@1 97.72 73.68 85.76 68.99

is very different from ‖ft‖2. More statistics on ‖f‖2 of different
models can be found in Table 2. When knowledge distillation is
not used, teacher and student features have very different directions
as there are large angles between them, especially when their
architectures are different.

When the `2 loss (`2 + CE) is used for feature mimicking, the
student features are encouraged to be similar to the teacher features
in both magnitudes and angles, and the student accuracy is higher.

The proposed LSH loss gives the student more freedom to its
feature magnitude. With the LSH loss (LSH + CE), vgg8 gets a
larger feature magnitude while MobileNetV2 gets a smaller feature
magnitude than that of CE. For vgg8, although θ of LSH + CE
is a little larger than that of `2 + CE, the accuracy of LSH + CE
is higher, which shows the benefit of giving more freedom to the
feature magnitude. For MobileNetV2, LSH + CE achieves both a
smaller θ and better performance.

Finally, the LSH loss and the `2 loss can be combined to help
each other, and result in both smaller θ (i.e., similar directions) and
better accuracy rates.

In Section 4, we will analyze the LSH module theoretically.

3.4 Ensemble all losses

The final loss consists of two terms, the classification and the
feature mimicking losses. The regular cross-entropy loss Lc is
used as the classification loss. We use both Lmse and Llsh as the
feature mimicking loss. Different from CRD [10] and SSKD [11],
our method does not need the knowledge distillation loss [3] (KL-
divergence between teacher and student logits with temperature).
The final loss is

L = Lc + β(Lmse + Llsh) , (15)

where β is the balancing weight. Therefore, if the mean square loss
is already used in other researches (e.g., detection, segmentation),
our LSH module can be added directly without introducing extra
hyperparameter.



TO APPEAR IN IEEE TRANS. PAMI 5

(a) (b) (c)

Figure 4. Illustration of different initialization for the bias. Red lines denote
the hash function constraints, while blue points represent teacher features.
(a), (b), and (c) show the bias initialized by 0, the median, or the mean of
the teacher hash values, respectively. This figure is best viewed in color
and zoomed in.

3.5 Model initialization
The LSH module needs to be initialized before the end-to-end
training. In the LSH module, the entries of W are sampled from
a Guassian distribution. We always set 0 as its mean and treat the
standard deviation (stdhash) as a hyperparameter. To find a good
default value for stdhash, we collect statistics about the standard
deviation (std) of the final classifier’s weight (W′) with vanilla
training (cf. Table 2). Assume W′ = [w′1,w

′
2, · · · ,w′c]T,

where w′i ∈ RD and c is the number of categories, the expectation
of ‖w′‖2 can be roughly calculated by

E(‖w′‖2) = E(
√
w′Tw′) ≈ std×

√
D , (16)

where the last transition holds because we noticed that the mean
of W′ is roughly zero. There is a tendency that E(‖w′‖2) does
not change drastically, and std will become small when D is large.
These phenomena inspire us to choose stdhash according to D.
We also find that directly using the std of teacher’s final classifier’s
weight is a good default value for stdhash.

b is the bias in the LSH module. As shown in Figure 4, the
bias can be initialized by 0, the median, or the mean of the teacher
hash values. Because BCE loss is applied, to make the binary
classification problem balanced, we use the median of the teacher
hash values as the bias in our LSH module. We also tried to use
the mean of the teacher hash values or simply set b = 0. Later we
will exhibit in Table 7 and Table 8 the experimental results when
using different initialization for the bias. These results show that
our method is not sensitive to the initialization of b.

4 THEORETICAL ANALYSES

Now we will analyze why the LSH loss is sensitive to the feature’s
direction but not to the feature’s magnitude. First, the following
Claim 1 says that if the teacher features are scaled, Llsh will not
change, i.e., Llsh is not sensitive to the teacher feature’s magnitude.
Claim 1. For a given scale s > 0, Llsh(sft,fs) = Llsh(ft,fs)

for arbitrary fs.

Next, the following Claim 2 states that when fs and ft have
the same direction, Llsh will encourage fs to be longer.
Claim 2. Assume the direction of fs is the same as that of ft, and

b = 0 in LSH. For a given scale s > 1, then Llsh(ft, sfs) ≤
Llsh(ft,fs) always holds.

Finally, the following Claim 3 and Claim 4 are the most
important conclusions, which explain why our LSH loss can help
the student to mimic the direction of teacher features. Claim 3
computes the probability of the LSH loss being small (less than
log 2) when we are given ∠ (ft,fs), the angle between teacher
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Figure 5. The cumulative probability of the angle with D = 2048, where
D and N denote the feature dimensionality and the number of hash
functions, respectively. With N becoming larger, the angle between the
student feature and the teacher feature will become smaller with high
probability. This figure is best viewed in color and zoomed in.

and student features. Hence, if the angle between fs and ft is
smaller, the LSH loss will become small with higher probability.

Claim 4 gives the probability of ∠ (ft,fs) < ε under the
constraint that Llsh is small. Using the probability formula in
Claim 4, we can numerically calculate the cumulative probability
of the angle when Llsh meets the condition (cf. Figure 5). From
this figure, we can conclude that if more hashing functions are used,
the direction of fs will approach that of ft with higher probability.
Claim 3. Suppose b = 0 in LSH, and fs and ft follow the standard

Gaussian distribution. Then,

Pr {lj < log 2 | ∠ (ft,fs) = θ} = 1− θ

π
(17)

will hold, where ∠ (ft,fs) denotes the angle between ft and
fs, and

lj
.
= −hj log (pj)− (1− hj) log (1− pj) . (18)

Claim 4. Suppose b = 0 in LSH, and fs and ft follow the standard
Gaussian distribution. Then, for any 0 < ε < π, the equation

Pr

∠ (ft,fs) < ε |
N∧
j=1

(lj < log 2)


=

∫ ε
0

((
1− θ

π

)N · sinD−2 (θ)
)

dθ∫ π
0

((
1− θ

π

)N · sinD−2 (θ)
)

dθ
(19)

will hold.

The proof of Claim 3 and Claim 4 are provided in the appendix
to this paper. Utilizing these results, we numerically calculate the
probability in Claim 4 for different N values. As Figure 5 shows,
when the number of hash function N grows, the angle between
teacher and student features indeed converge to 0. That is, our LSH
loss is effective in mimicking the teacher feature’s direction.

5 EXPERIMENTS

In this section, we evaluate the proposed feature mimicking frame-
work on single-label classification, multi-label recognition, and
object detection. For single-label classification, we use the CIFAR-
100 [30] and ImageNet [31] datasets, which are usually used
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Table 2
The networks used in our experiments. ResNet34 and ResNet18 were
used on ImageNet, while other models were used on CIFAR-100. D

denotes the dimensionality of the feature before the final classifier. std
represents the standard deviation of the final classifier’s weight with

vanilla training. ‖f‖2 is the mean of the 2-norm of features in the training
set.

role model D std ‖f‖2

Teacher

WRN-40-2 128 0.1713 13.64
resnet56 64 0.2415 18.08
resnet110 64 0.2262 20.13
resnet32x4 256 0.1100 12.06

vgg13 512 0.0749 12.64
ResNet50 2048 0.0381 15.52

Student

WRN-16-2 128 0.2035 15.07
WRN-40-1 64 0.2638 14.29

resnet20 64 0.2704 14.47
resnet32 64 0.2563 16.06
resnet8x4 256 0.1573 16.92

vgg8 512 0.0980 16.50
MobileNetV2 640 0.0579 15.82
ShuffleNetV1 960 0.0642 17.26
ShuffleNetV2 1024 0.0625 15.70

Teacher ResNet34 512 0.0640 30.75
Student ResNet18 512 0.0695 29.58

as benchmarks for knowledge distillation. CIFAR-100 contains
32 × 32 natural images from 100 categories, which contains
50000 training images and 10000 testing images. ImageNet is a
large-scale dataset with natural color images from 1000 categories.
Each category typically has 1300 images for training and 50 for
evaluation.

For CIFAR-100, we used the code provided by CRD [10].1 For
a fair comparison, we used the same hyperparameters of CRD in
our experiments, such as the learning rate, batch size and epoch.
For ImageNet, we followed the standard PyTorch example code
and trained 100 epochs (following CRD).2

5.1 Ablation studies
We first study the effects of the loss functions, hyperparameters in
LSH, and model initialization.

5.1.1 The loss functions
First, we conduct ablation studies on the loss functions. Our final
loss contains Lmse and Llsh. We will use only one of them to see
their individual effects.

Table 3 and Table 4 summarize the results. We used “KD” [3]
as the baseline method. Note that all experiments used the
classification loss Lc. “`2 loss” denotes only using Lmse, while
“LSH loss” represent only using Llsh. “`2 loss + LSH loss”
combines the Lmse and Llsh as in Equation 15. To balance the
feature mimicking loss and classification loss, β was set as 6. In
these tables, we also show the relative improvement as a percentage.
Accuracy of the student and the teacher are treated as 0% and 100%,
respectively. For example, in the last column of Table 4, the student
and teacher accuracy are 70.50 and 75.61, while the proposed
“`2 loss + LSH loss” is 76.25, hence the relative improvement is
76.25−70.50
75.61−70.50 = 113%.

When the teacher and student share similar architectures, only
using the `2 loss can surpass the standard KD significantly, which

1. https://github.com/HobbitLong/RepDistiller
2. https://github.com/pytorch/examples/tree/master/imagenet

demonstrates the advantage of feature mimicking for knowledge
distillation. When only applying the LSH loss we proposed, the
performance of most teacher/student combinations are better than
that of the `2 loss, showing the benefit of giving the student more
freedom to the feature magnitude and letting it focus on mimicking
the feature direction. Combining `2 and LSH losses can boost the
performance. We believe it is because the LSH loss can alleviate
the shortcomings of the `2 loss, and the LSH loss can also benefit
from the `2 loss.

When the teacher and student use different architectures, the
difference of their accuracy is larger than that in the similar-
architecture settings, and their features are more different. Due
to the limited capacity of student networks, it is difficult for
the student to mimic both features’ directions and magnitudes.
The experimental results in Table 4 show that only using Llsh
outperforms using Lmse in most cases, which justifies that feature
directions have more effective information to boost the student
performance, and that we should make the student pay more
attention to the feature direction. Combining `2 and LSH losses is
consistently better than only applying the `2 loss. It demonstrates
that feature mimicking indeed benefits from giving more freedom
to the student feature’s magnitude.

Furthermore, by comparing the relative improvement numbers
in Table 3 and Table 4, it is obvious that knowledge distillation
across different network architectures is a more challenging task
than distilling between similar-architecture networks. Hence, it is
not surprising that differences among the `2 loss, the proposed LSH
loss, and the “`2 loss + LSH loss” are relatively small in Table 3.
On the other hand, Table 4 confirms that the proposed LSH loss is
supervisor to the `2 loss, which also shows that the combination of
these two are complementary in feature mimicking. For example,
when we distill knowledge from ResNet50 to MobileNetV2, the
combined relative improvement (30%) is even higher than the sum
of both (8% + 16%).

5.1.2 Hyperparameters in the LSH module
Next, we study the effect of hyperparameters in the LSH loss.
There are three hyperparameters in locality-sensitive hashing. N
denotes the number of hashing functions. stdhash represents the
standard deviation of the Gaussian sampler. Note that we always
use 0 as the mean of the Gaussian sampler. β is the balancing
weight for both Llsh and Lmse.

Table 5 and Table 6 summarize the results. First, when
stdhash = 1 and N = 2048, different teacher/student combina-
tions achieve the best results with different β. So it is better to use a
validation set to tune this hyperparameter. Limited by computation
resources, we simply used β = 6 for all experiments on CIFAR-
100. Second, the value of stdhash also affect the performance.
But we find that it is less sensitive than β. Third, a larger N may
reduce the randomness in LSH. Experiments show that setting
N = 2048 is good enough. Overall, if applying our method
to other problems, we suggest that N = 2048 or N = 4Dt,
stdhash = 1 or stdhash = stdt, and finally using a validation set
to tune β.

5.1.3 Different model initialization
We study different initialization for bias in the LSH module. By
default, the bias is initialized as the median of teacher hashing
codes to balance the binary classification problem. We also tried to
use the mean of teacher hashing codes or 0 to initialize the bias.
Table 7 and Table 8 present the results. We find that knowledge
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Table 3
Test accuracy (%) of the student network on CIFAR-100. The teacher and the student share similar architectures.

Teacher WRN-40-2 WRN-40-2 resnet56 resnet110 resnet110 resnet32x4 vgg13
Student WRN-16-2 WRN-40-1 resnet20 resnet20 resnet32 resnet8x4 vgg8

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36

KD 74.92 (71% ↑) 73.54 (43% ↑) 70.66 (49% ↑) 70.67 (31% ↑) 73.08 (61% ↑) 73.33 (12% ↑) 72.98 (61% ↑)
`2 loss 75.53 (97% ↑) 74.33 (65% ↑) 71.42 (72% ↑) 71.30 (43% ↑) 73.81 (84% ↑) 74.01 (22% ↑) 72.33 (46% ↑)

LSH loss 75.61 (100% ↑) 74.20 (61% ↑) 71.51 (75% ↑) 71.73 (51% ↑) 73.69 (80% ↑) 73.49 (14% ↑) 72.69 (54% ↑)
`2 loss + LSH loss 75.62 (100% ↑) 74.54 (71% ↑) 71.65 (79% ↑) 71.39 (44% ↑) 73.99 (90% ↑) 73.37 (13% ↑) 73.68 (78% ↑)

Table 4
Test accuracy (%) of the student network on CIFAR-100. The teacher and the student use different architectures.

Teacher vgg13 ResNet50 ResNet50 resnet32x4 resnet32x4 WRN-40-2
Student MobileNetV2 MobileNetV2 vgg8 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1

Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.60 64.60 70.36 70.50 71.82 70.50

KD 67.37 (28% ↑) 67.35 (19% ↑) 73.81 (38% ↑) 74.07 (40% ↑) 74.45 (35% ↑) 74.83 (85% ↑)
`2 loss 66.98 (24% ↑) 65.73 (8% ↑) 71.90 (17% ↑) 74.65 (47% ↑) 75.73 (51% ↑) 75.37 (95% ↑)

LSH loss 67.48 (29% ↑) 67.02 (16% ↑) 74.15 (42% ↑) 75.49 (56% ↑) 75.56 (49% ↑) 75.89 (105% ↑)
`2 loss + LSH loss 67.16 (25% ↑) 68.99 (30% ↑) 74.89 (50% ↑) 75.36 (54% ↑) 76.70 (64% ↑) 76.25 (113% ↑)

Table 5
Test accuracy (%) of the student network on CIFAR-100 using different hyperparameters (β, stdhash, N ). The teacher and the student share similar

architectures.

Teacher WRN-40-2 WRN-40-2 resnet56 resnet110 resnet110 resnet32x4 vgg13
Student WRN-16-2 WRN-40-1 resnet20 resnet20 resnet32 resnet8x4 vgg8

stdt 0.17 0.17 0.24 0.23 0.23 0.11 0.07
stds 0.20 0.26 0.27 0.27 0.26 0.16 0.10
Dt 128 128 64 64 64 256 512
Ds 128 64 64 64 64 256 512

(1, 1, 2048) 75.33 73.50 71.25 71.17 73.37 73.64 73.06
(3, 1, 2048) 75.47 74.16 71.70 71.68 73.87 74.11 72.91
(5, 1, 2048) 75.99 74.43 71.41 71.66 73.32 73.66 73.77
(6, 1, 2048) 75.62 74.54 71.65 71.39 73.99 73.37 73.68
(7, 1, 2048) 76.34 74.36 71.18 71.78 73.96 73.70 73.89

(6, stdt, 2048) 76.11 74.42 70.96 71.75 74.00 73.91 73.57
(6, stds, 2048) 75.53 74.25 71.43 71.60 74.19 73.82 73.61

(6, stdt, 4×Dt) 76.43 74.15 71.27 71.13 73.55 74.13 73.57
(6, stdt, 32×Dt) 75.84 74.51 70.96 71.75 74.00 73.77 73.25

Table 6
Test accuracy (%) of the student network on CIFAR-100 using different hyperparameters (β, stdhash, N ). The teacher and the student use different

architectures.

Teacher vgg13 ResNet50 ResNet50 resnet32x4 resnet32x4 WRN-40-2
Student MobileNetV2 MobileNetV2 vgg8 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1

stdt 0.07 0.04 0.04 0.11 0.11 0.17
stds 0.06 0.06 0.10 0.06 0.06 0.06
Dt 512 2048 2048 256 256 128
Ds 640 640 512 960 1024 960

(1, 1, 2048) 66.82 65.79 72.12 75.23 75.42 74.98
(3, 1, 2048) 67.95 67.33 73.47 74.94 76.12 76.17
(5, 1, 2048) 68.01 67.60 74.64 75.38 75.56 76.06
(6, 1, 2048) 67.16 68.99 74.89 75.36 76.70 76.25
(7, 1, 2048) 67.88 69.20 74.43 75.25 76.70 76.35

(6, stdt, 2048) 68.12 67.57 72.89 75.22 76.52 75.63
(6, stds, 2048) 67.77 67.47 73.68 74.93 76.27 75.70

(6, stdt, 4×Dt) 68.12 67.95 72.80 75.02 76.46 76.36
(6, stdt, 32×Dt) 67.78 67.33 72.76 75.36 76.25 75.83
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Table 7
Test accuracy (%) of the student network on CIFAR-100 with different initializations of bias in the LSH module. The teacher and the student share

similar architectures. Bold denotes the best results.

Teacher WRN-40-2 WRN-40-2 resnet56 resnet110 resnet110 resnet32x4 vgg13
Student WRN-16-2 WRN-40-1 resnet20 resnet20 resnet32 resnet8x4 vgg8

KD 74.92 73.54 70.66 70.67 73.08 73.33 72.98
0 76.04 74.46 71.16 71.79 74.18 73.70 73.92

mean 75.39 74.11 71.52 70.95 73.85 73.64 73.98
median 75.62 74.54 71.65 71.39 73.99 73.37 73.68

Table 8
Test accuracy (%) of the student network on CIFAR-100 with different initializations of bias in the LSH module. The teacher and student use different

architectures. Bold denotes the best results.

Teacher vgg13 ResNet50 ResNet50 resnet32x4 resnet32x4 WRN-40-2
Student MobileNetV2 MobileNetV2 vgg8 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1

KD 67.37 67.35 73.81 74.07 74.45 74.83
0 67.14 68.64 74.25 75.57 76.71 75.76

mean 68.16 68.07 74.54 75.55 75.32 75.99
median 67.16 68.99 74.89 75.36 76.70 76.25

distillation is not sensitive to the initialization of bias. When apply
our method on large-scale datasets (like ImageNet), we used 0 to
initialize the bias because it is difficult to compute the median.

5.2 Single-label Classification

Table 9 and Table 10 compare our method with other knowledge
distillation approaches on the CIFAR-100 benchmark. We simply
set β = 6, stdhash = 1 and N = 2048 for all experiments.
And for a fair comparison, we used the same teacher networks as
CRD [10]. Different from SSKD [11], we only used self-supervised
learning [5] to train student networks and got the backbone weights
to initialize our framework.

Table 9 presents the results when the teacher and student share
similar architecture. Note that “Ours (1FC)” removed the linear
embedding layer, which is possible because teacher and student
features have the same dimensionality. Our method surpasses
CRD+KD [10] on most teacher/student combinations. Note that
our method did not use the original KD [3] loss, and is thus more
flexible. Compared with SSKD [11], our method outperform on five
teacher/student combinations. And our method can be combined
with SSKD (“Ours + SSKD”), which consistently outperforms
SSKD. We simply set β = 0.01, stdhash = 1, N = 2048 and
added our loss terms into the SSKD framework.

Table 10 summarizes the results when the architectures of
teacher and student are different. Our method outperformed
CRD+KD [10] on the majority of teacher/student combinations,
but slightly worse than SSKD [11]. These results suggest that
with different teacher/student architectures, self-supervised learning
is critical for KD (because SSKD outperformed other methods).
However, note that our method can be combined with SSKD,
which consistently outperforms SSKD. Same as that on similar
architecture, we simply set β = 0.01, stdhash = 1, N = 2048
and added our loss terms into the SSKD framework.

Table 11 summarize the results on ImageNet. The hyperparam-
eters in our method are β = 5, stdhash = stdt and N = 2048.
Note that different from CRD + KD and SSKD, we did not
use the standard KD loss [3] to boost the performance. Only using
the `2 loss to force the student features to mimic the teacher
features outperforms CRD, which once again supports the validity

of our proposed feature mimicking. Combining the `2 and LSH
losses further boosts the performance by a significant margin and
achieves the state-of-the-art performance, which further supports
the proposed LSH loss.

5.3 Multi-label classification

We consider two typical multi-label classification tasks, i.e.,
VOC2007 [34] and MS-COCO [35]. VOC007 contains a train-val
set of 5011 images and a test set of 4952 images. And MS-COCO
contains 82081 images in the training set and 40137 images for
validation. We resize all images into a fixed size (448 × 448) to
train the networks. And the data augmentation consist of random
horizontal flips and color jittering. The backbone networks contain
MobileNetV2, ResNet18, ResNet34, ResNet50 and ResNet101.
The networks are all pre-trained on ImageNet and finetuned on the
multi-label classification dataset with stochastic gradient descent
(SGD) for 60 epochs in total. The binary cross entropy (BCE)
loss is used to finetune the network. We employ the mean average
precision (mAP) to evaluate all the methods. Note that multi-label
recognition is not a typical application of KD because existing KD
methods rely on the soft logits, which do not exist in multi-label
scenarios. The proposed feature mimicking method, however, is
flexible and handles multi-label distillation well.

First, we conduct experiments on VOC2007 using ResNet34 as
teacher and ResNet18 as student to demonstrate that feature space
alignment is necessary and important. The teacher ResNet34 is first
trained on ImageNet and then finetuned on VOC2007. It achieves
91.69% mAP as in Table 12. The student ResNet18 achieves
89.15% mAP. And in Section 5.2, we have trained ResNet18
supervised by ResNet34 on ImageNet. This model is denoted as
“ResNet18 (pretrained by KD)” and achieves 89.88% mAP. When
finetuned on VOC2007 supervised by the teacher with the `2 loss,
ResNet18 achieves a worse performance (88.75%) than baseline,
which we believe is because the feature spaces of the teacher and
student do not align well. If we use ResNet18 pretrained by KD
whose feature space aligns to the teacher’s, the student can be
improved to 90.89%. With the 2FC structure, the first linear layer
can transform the student feature space to align to the teacher’s. It
alleviates the feature space misalignment issue and achieve a better
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Table 9
Test accuracy (%) of the student network on CIFAR-100. The teacher and the student share similar architectures. We denote by * methods where we

re-run three times using author-provided code. And the results of our method were run by five times. Bold denotes the best results.

Teacher WRN-40-2 WRN-40-2 resnet56 resnet110 resnet110 resnet32x4 vgg13
Student WRN-16-2 WRN-40-1 resnet20 resnet20 resnet32 resnet8x4 vgg8

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36

KD [3] 74.92 73.54 70.66 70.67 73.08 73.33 72.98
FitNet [8] 73.58 72.24 69.21 68.99 71.06 73.50 71.02
AT [15] 74.08 72.77 70.55 70.22 72.31 73.44 71.43
SP [17] 73.83 72.43 69.67 70.04 72.69 72.94 72.68
AB [16] 72.50 72.38 69.47 69.53 70.98 73.17 70.94
FT [9] 73.25 71.59 69.84 70.22 72.37 72.86 70.58

FSP [18] 72.91 n/a 69.65 70.11 71.89 72.62 70.23
CRD [10] 75.48 74.14 71.16 71.46 73.48 75.51 73.94

CRD+KD [10] 75.64 74.38 71.63 71.56 73.75 75.46 74.29
Ours (1FC) 75.99 - 71.39 71.64 73.90 73.40 73.78

Ours 76.41 74.64 71.44 71.48 73.59 76.75 74.63

SSKD* [11] 75.55 75.50 71.00 71.27 73.60 76.13 74.90
Ours + SSKD 75.89 75.72 71.29 71.34 73.68 76.95 75.19

Table 10
Test accuracy (%) of the student network on CIFAR-100. The architectures of teacher and student are different. We denote by * methods where we

re-run three times using author-provided code. And the results of our method were run by five times. Bold denotes the best results.

Teacher vgg13 ResNet50 ResNet50 resnet32x4 resnet32x4 WRN-40-2
Student MobileNetV2 MobileNetV2 vgg8 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1

Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.60 64.60 70.36 70.50 71.82 70.50

KD [3] 67.37 67.35 73.81 74.07 74.45 74.83
FitNet [8] 64.14 63.16 70.69 73.59 73.54 73.73
AT [15] 59.40 58.58 71.84 71.73 72.73 73.32
SP [17] 66.30 68.08 73.34 73.48 74.56 74.52
AB [16] 66.06 67.20 70.65 73.55 74.31 73.34
FT [9] 61.78 60.99 70.29 71.75 72.50 72.03

CRD [10] 69.73 69.11 74.30 75.11 75.65 76.05
CRD+KD [10] 69.94 69.54 74.58 75.12 76.05 76.27

Ours 69.42 69.64 74.74 77.06 77.08 77.57

SSKD* [11] 71.24 71.81 75.71 78.18 78.75 77.30
Ours+SSKD 71.77 72.38 76.13 78.32 79.01 77.46

Table 11
Top-1 and Top-5 error rates (%) on the ImageNet validation set. The teacher and student are ResNet-34 and ResNet-18, respectively. Bold denotes

the best results.

Teacher Student CC [32] SP [17] Online-KD [33] KD [3] AT [15] CRD [10] CRD+KD SSKD [11] Ours (`2) Ours (`2 + LSH)

Top-1 26.70 30.25 30.04 29.38 29.45 29.34 29.30 28.83 28.62 28.38 28.61 28.28
Top-5 8.58 10.93 10.83 10.20 10.41 10.12 10.00 9.87 9.51 9.33 9.61 9.59

Table 12
Test mAP (%) on Pascal VOC2007.

Teacher ResNet34 ResNet34
Student ResNet18 ResNet18 (pretrained by KD)

Teacher 91.69 91.69
Student 89.15 89.88

KD 89.26 (4% ↑) 89.85 (2% ↓)
`2 (1FC) 88.75 (20% ↓) 90.89 (56% ↑)
`2 (2FC) 89.98 (33% ↑) 90.77 (49% ↑)

performance (89.98%) than baseline. ResNet18 pretrained by KD
with 2FC achieves a worse performance (90.77%) than that with

Table 13
Test mAP (%) of the student network on Pascal VOC07. Bold denotes

the best results.

2nd stage
1st stage L2 LSH LSHL2

L2 90.40 (49% ↑) 90.21 (42% ↑) 90.59 (57% ↑)
LSH 90.29 (45% ↑) 90.11 (38% ↑) 90.30 (45% ↑)

LSHL2 90.57 (56% ↑) 90.37 (48% ↑) 90.59 (57% ↑)

1FC. That demonstrates it does not need the first linear layer to
transform the feature space.

Although the backbone pretrained by KD on a large scale
dataset will transfer better and easily mimic the teacher’s features
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Table 14
Test mAP (%) of the student network on Pascal VOC2007. Bold denotes

the best results.

Teacher ResNet101 ResNet101
Student ResNet50 MobileNetV2

Teacher 93.27 93.27
Student 92.76 89.53

LSHL2→ KD 92.69 (14% ↓) 89.64 (3% ↑)
LSHL2→ L2 93.17 (80% ↑) 90.14 (16% ↑)
LSHL2→ LSH 92.40 (71% ↓) 89.91 (10% ↑)
LSHL2→ LSHL2 92.85 (18% ↑) 89.90 (10% ↑)

Table 15
Test mAP (%) of the student network on MS-COCO. Bold denotes the

best results.

Teacher ResNet101 ResNet101
Student ResNet50 MobileNetV2

Teacher 77.67 77.67
Student 75.54 71.06

LSHL2→ KD 75.14 (19% ↓) 71.47 (6% ↑)
LSHL2→ L2 77.04 (70% ↑) 73.28 (34% ↑)
LSHL2→ LSH 76.59 (49% ↑) 73.73 (40% ↑)
LSHL2→ LSHL2 77.16 (76% ↑) 73.73 (40% ↑)

during finetuning, it is expensive to pretrain the student on a
large scale dataset in many cases. Hence, we propose a simple
but effective approach to alleviate the feature space misalignment
problem. We finetune the student by two stages. In the first stage,
we fix the weights in the student backbone and only optimize the
linear embedding layer with the feature mimicking loss functions.
This stage aims at transform the student feature space to align to
the teacher’s. In the second stage, we add the classifier on top of the
linear embedding layer and optimize all parameters in the student
with the supervision of both the groundtruth labels and the teacher.
Table 13 summarize the results. With this two-stage training, the
student can be improved by a large margin, compared with 89.98%
mAP when training the student by one stage. We find that the
feature mimicking loss chosen in the first stage is important, and
the LSHL2 (Lmse + Llsh) loss is consistently better than the `2
loss.

We conduct experiments on VOC2007 and MS-COCO and
adopt two settings, i.e., using ResNet101 to teach ResNet50 and
MobileNetV2, respectively. The student is finetuned with the two-
stage strategy, and the LSHL2 loss is used in the first stage based
on the above findings. Table 14 presents the results on VOC2007.
LSHL2 → L2 denotes using the LSHL2 loss in the first stage
and the `2 loss in the second stage. The hyperparameters are set
as β = 0.5, stdhash = stdt, and N = 4Dt in all experiments.
LSHL2→ L2 achieves the best performance. ResNet50 is improved
by 0.41% and MobileNetV2 is improved by 0.61%. Experimental
results of MS-COCO are showed in Table 15. And we use β = 3,
stdhash = stdt, and N = 4Dt in all experiments. LSHL2 →
LSHL2 achieves the best performance.

A common trick in the multi-label classification task is replac-
ing the global average pooling (GAP) with the global maximum
pooling (GMP). So we evaluate the backbone network with GMP
on the MS-COCO. Table 16 presents the results. As previously
mentioned, we use ResNet101 (GMP) to teach MobileNetV2
(GMP) and ResNet50 (GMP). In addition, we also evaluate the

Table 16
Test mAP (%) on MS-COCO. The backbone networks use the global

maximum pooling (GMP) to aggregate features. Bold denotes the best
results.

Model MobileNetV2 ResNet50 ResNet101

Baseline 73.90 77.20 79.57

MCAR [36] 75.0 82.1 83.8
Ours 76.03 79.55 81.24

Table 17
Test mAP@0.5 (%) of the student network on Pascal VOC0712. The
detector is Faster R-CNN with different backbones. Bold denotes the

best results.

Teacher ResNet101 VGG16
Student ResNet50 VGG11

Teacher 83.6 79.0
Student 82.0 75.1

ROI-mimic [19] 82.3 (19% ↑) 75.0 (3% ↓)
PAD-ROI-mimic [21] 82.5 (31% ↑) 75.8 (18% ↑)

Fine-grained [20] 82.0 (0% ↑) 74.6 (13% ↓)
PAD-Fine-grained [21] 82.3 (19% ↑) 75.2 (3% ↑)

Ours (L2) 83.0 (63% ↑) 76.9 (46% ↑)
Ours (LSHL2) 83.1 (69% ↑) 77.2 (54% ↑)

performance of self-distillation, i.e., using ResNet101 (GMP) to
teach ResNet101 (GMP). Our method achieves better performances
than baselines. We compared our method with MCAR [36], which
employs a complex training pipeline designed for multi-label
classification and is the state-of-the-art method on multi-label
classification. Our MobileNetV2 surprisingly surpassed that in
MCAR, which demonstrates the advantage of our method.

5.4 Detection

We evaluate our method on the object detection task. Following
previous work [21], we conduct experiments on the Pascal VOC
dataset [34]. The training set consists of the VOC2007 trainval set
and the VOC2012 trainval set, and in total 21K images. The testing
set is the VOC2007 test set of 5K images. We use mAP@0.5
as the metric to compare the performance of different methods.
The detection frameworks we adopted are both two-stage (Faster-
RCNN [37]) and one-stage (RetinaNet [38]). And we use four
networks (ResNet50, ResNet101, VGG11, VGG16) pretrained on
ImageNet as the backbone. FPN [39] layers are adopted in all
experiments. All models are finetuned on VOC with 24 epochs.
The hyperparameters in feature mimicking loss are set as β = 7,
stdhash = stdt, N = 4Dt and bias = 0 in all experiments. We
have released our code.3

Figure 6a shows our feature mimicking framework with Faster-
RCNN. As in classification, we want the student to mimic features
in the penultimate layer. In the object detection framework, two
linear layers are applied on the penultimate layer to generate the
classification and bounding box predictions, respectively. Given
one image, the backbone and FPN produce the feature pyramid, and
the region proposal network (RPN) generates proposals to indicate
the localities that objects may appear. Hence, many features are
extracted according to the proposals. To make sure the student
will mimic teacher’s features in the same locations, the teacher

3. https://git.nju.edu.cn/wanggh/detection.vision
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(b)

Figure 6. The pipeline of our method on the object detection task. (a) and (b) show our feature mimicking framework with Faster-RCNN and RetinaNet,
respectively. This figure is best viewed in color and zoomed in.

Table 18
Test mAP@0.5 (%) of the student network on Pascal VOC0712. The

detector is RetinaNet with different backbones. Bold denotes the best
results.

Teacher ResNet101 VGG16
Student ResNet50 VGG11

Teacher 83.0 76.6
Student 82.5 73.2

Fine-grained [20] 81.5 (200% ↓) 72.0 (35% ↓)
PAD-Fine-grained [21] 81.9 (120% ↓) 73.2 (0% ↓)

Ours (L2) 82.6 (20% ↑) 74.8 (47% ↑)
Ours (LSHL2) 83.0 (100% ↑) 75.2 (59% ↑)

uses the proposals produced by the student. When training this
framework, we only add the proposed loss to the original loss and
apply the traditional training strategy. Our proposed loss is applied
on the entire detection network, and it affects the optimization of
the backbone network, FPN, RPN and MLP.

The experimental results are presented in Table 17. First, we
use ResNet101 to teach ResNet50. The performances of these
two baseline networks are 83.6% and 82.0%, respectively. The
teacher is higher than student by 1.6%. All experimental results of
ROI-mimic, PAD-ROI-mimic, Fine-grained and PAD-Fine-grained
are cited from PAD [21]. They improve the student by at most
0.5%. With our feature mimicking framework, i.e., mimicking the
features in the penultimate layer, simply using the `2 loss as the
feature mimicking loss can improve the student by 1%. That shows
the benefit of feature mimicking on object detection. Combining
the LSH loss and the `2 loss, the student is improved by 1.1%.
When using VGG16 to teach VGG11, the `2 loss can improve the
student by 1.8%. With the LSH loss, the student is improved by
2.1%.

Figure 6b shows our feature mimicking framework with
RetinaNet. Different from Faster-RCNN, RetinaNet produces
features on all positions of the feature pyramid, and each position
will consider several anchors. With the groundtruth bounding boxes,
only a few of positions are considered as positive and sent to the
classification loss. We force the student to mimic the features
on these positive positions and ignore the features on negative
positions. RetinaNet uses class subnet and box subnet to generate
class feature and box feature, respectively. We find that it is better
to only mimic the class feature and ignore the box feature. So

our proposed feature mimicking loss affects the optimization of
the backbone network, FPN and the class subnet. Table 18 shows
the experimental results. Similar to Faster-RCNN, our feature
mimicking framework can improve the student with a large margin.
ResNet50 is improved by 0.5% whose performance is comparable
to the teacher performance. And VGG11 is also improved by 2%.

Overall, these object detection experimental results demonstrate
the advantages of our method. The LSHL2 loss is consistently
better than the `2 loss in all experiments. Note that the difference
between the teacher and the student is smaller when compared
to the differences in recognition tasks. However, the high relative
improvement numbers and the consistent improvements across
different experiments both verifies our proposed method is effective.
In this paper, we only focus on mimicking the final features and
leave mimicking proposals as the future work. However, only
using feature mimicking has already improved the student by a
large margin, and the RetinaNet with ResNet50 backbone is even
comparable to the teacher performance.

Compared with multi-label classification, we find it does not
need the two stage training strategy on object detection. We guess
it may be due to the MLP layer and the subnet in Faster-RCNN
and RetinaNet, respectively. These layers are randomly initialized
before finetuning on the detection dataset. The feature space
alignment will be learned implicitly in these layers.

6 CONCLUSION

In this paper, we proposed a flexible and effective knowledge
distillation method. We argued that mimicking feature in the
penultimate layer is more advantageous than distilling the teacher’s
soft logits [3]. And to make the student learn the more effective
information from the teacher, it needs to give the student more
freedom to its feature magnitude, but let it focus on mimicking
the feature direction. We proposed a loss term based on Locality-
Sensitive Hashing (LSH) [14] to fulfill this objective. Our algorithm
was evaluated on single-label classification, multi-label classifica-
tion and object detection. Experiments showed the effectiveness of
the proposed method.

Future work could explore how to improve our method, such as
reducing the randomness in the LSH module, and aligning feature
spaces efficiently and even if without training data. Applying our
method to other problems is also interesting. It is promising to
combine our method with self-supervised learning. And we will
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also consider how to deploy our method to knowledge distillation
under a data free setting.
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APPENDIX A
PROOF OF CLAIM 1
Proof. We will prove that hW ,b′(sft) = hW ,b(ft), where
W = [w1,w2, · · · ,wN ]T, b′ = [b′1, b

′
2, · · · , b′N ]T and b =

[b1, b2, · · · , bN ]T. Assume there are m teacher features, that is
f1,f2, · · · ,fm.

For 0 ≤ j ≤ N , bj = median(f1,f2, · · · ,fm). And it is
easy to see b′j = median(sf1, sf2, · · · , sfm) = sbj when s >
0. Hence, sign(wT

j fi+bj) = sign(wT
j sfi+sbj) for 0 ≤ i ≤ m

when s > 0. That implies hW ,b′(sft) = hW ,b(ft). �

APPENDIX B
PROOF OF CLAIM 2
Proof. Note that

Llsh(ft,fs) = − 1

N

N∑
j=1

[hj log pj + (1− hj) log(1− pj)] ,

(20)
where hj and pj is the j-th entry of sign(WTft) and σ(WTfs),
respectively.

First, we discuss the situation when hj = 1, that is, the angle
between wj and ft is less than 90 degrees, and cos〈wj ,ft〉 ≥ 0.
Therefore,

− hj log σ(swT
j fs)− (1− hj) log(1− σ(swT

j fs))

=− log σ(s‖wj‖‖fs‖ cos 〈wj ,fs〉) (21)

≤− log σ(‖wj‖‖fs‖ cos 〈wj ,ft〉) (22)

=− hj log pj − (1− hj) log(1− pj) . (23)

Then, when hj = 0, similar to equation 21, we can get

− hj log σ(swT
j fs)− (1− hj) log(1− σ(swT

j fs))

=− log
(

1− σ(swT
j fs)

)
(24)

≤− log (1− σ(‖wj‖‖fs‖ cos 〈wj ,ft〉)) (25)

=− hj log pj − (1− hj) log(1− pj) . (26)

To sum up, Llsh(ft, sfs) ≤ Llsh(ft,fs) always holds when
s > 1. �

APPENDIX C
PROOF OF CLAIM 3 AND CLAIM 4
We define the notations and terminologies first. We assume that fs
and ft follow the standard normal distribution:

• ft ∈ RD : ft ∼ N (0, ID)
• fs ∈ RD : ft ∼ N (0, ID)

In our LSH module, W ∈ RD×N can be alternatively written
as [w1,w2, · · · ,wN ]T and entries of W are sampled from a
Guassian distribution:

• wj ∈ RD : wj ∼ N (0, ID)

A few derived variables are:

• h ∈ RN : hj
.
= sign

(
wT
j ft
)

• p ∈ RN : pj
.
= σ

(
wT
j fs

)
• l ∈ RN : lj

.
= −hj log (pj)− (1− hj) log (1− pj)

We also use a few shorthand notations:

• unit (x)
.
=

{
x
‖x‖2

if ‖x‖2 > 0 ,

0 otherwise .
• ∠ (x,y)

.
= arccos (unit (x)

T
unit (y))

• Sn−1 .
= {x ∈ Rn | ‖x‖2 = 1}: the n-dimensional unit

hypersphere
• dgeo: the geodesic distance, with which Sn−1 forms a

legitimate metric space
• µn: the Lebesgue measure on Rn
• σn−1: the surface area measure on Sn−1

• An−1
.
=
∫
Sn−1 dσn−1 = 2πn/2

Γ(n/2) : the surface area of
Sn−1

• I: the indicator function
• p(x): the p.d.f. of x

Lemma 5. Let x ∈ Rn (n ∈ N+) be a random vector with each
element xi ∼ N (0, 1) independently. Then for any function
f : Sn−1 ∪ {0} → R satisfying

• f is bounded,
• f is continuous on Sn−1,

there holds

Ex[f(unit (x))] =
1

An−1

∫
Sn−1

f(u) dσn−1(u) . (27)

Proof.

Ex[f(unit (x))]

=

∫
Rn
f(unit (x)) · p(x) dµn(x)+∫

{0}
f(unit (x)) · p(x) dµn(x) (28)

=

∫
Rn
f(unit (x)) · p(x) dµn(x) + 0︸︷︷︸

due to f ’s boundedness

(29)

=

∫
Rn
f(unit (x)) · (2π)

−n/2
e−

1
2‖x‖

2
2 dµn(x) (30)

=(2π)
−n/2

∫ ∞
0

[∫
Sn−1

f(u) dσn−1(u)

]
· e− r

2

2 rn−1 dr︸ ︷︷ ︸
integration by substitution (from Cartesian to polar)

(31)

=(2π)−n/2
∫ ∞

0

(
e−r

2/2rn−1
)

dr

∫
Sn−1

f(u) dσn−1(u)

(32)

=
Γ(n/2)

2πn/2︸ ︷︷ ︸
1

An−1

∫
Sn−1

f(u) dσn−1(u) . (33)

�

Corollary 5.1. Let x ∈ Rn (n ∈ N+) be a random vector with
each element xi ∼ N (0, 1) independently. Then for any Borel
set B in Sn−1,

Pr {unit (x) ∈ B} =
σn−1(B)

An−1
. (34)

Proof. For an open set O in Sn−1 (rename it to make things
clear), define

fO(u) =

{
0, for u = 0;

χO, for u ∈ Sn−1 ,
(35)
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where χO is the characteristic function of O and

f
(k)
O (u) =

{
0 if u = 0;

max (0, 1− k · infv∈O dgeo(u,v)) if u ∈ Sn−1

(36)

for k ∈ N∗. Then the conditions of Lebesgue’s dominated
convergence theorem are met, i.e.,

• f
(k)
O ’s are bounded,

• f
(k)
O ’s converge pointwise to fO.

Thus

Pr {unit (x) ∈ O}
=Ex[fO(unit (x))] (37)

= lim
k→∞

Ex

[
f

(k)
O (unit (x))

]
︸ ︷︷ ︸
due to dominated convergence theorem

(38)

= lim
k→∞

(
1

An−1

∫
Sn−1

f
(k)
O (u) dσn−1(u)

)
︸ ︷︷ ︸

due to Lemma 5

(39)

=
1

An−1
lim
k→∞

(∫
Sn−1

f
(k)
O (u) dσn−1(u)

)
(40)

=
1

An−1

∫
Sn−1

fO(u) dσn−1(u)︸ ︷︷ ︸
due to dominated convergence theorem

(41)

=
1

An−1

∫
Sn−1

χO(u) dσn−1(u) (42)

=
1

An−1

∫
O

dσn−1(u) (43)

=
σn−1(O)

An−1
. (44)

Now that the equation holds for any open set O, it can be shown
by induction that

Pr {unit (x) ∈ B} =
σn−1(B)

An−1
(45)

for any Borel set B. �

Lemma 6.

p{∠ (ft,fs) = θ} =
AD−2

AD−1
sinD−2 (θ) (46)

for θ ∈ (0, π).

Proof.

Pr {∠ (ft,fs) ≤ θ | ft}

=Pr
{

unit (fs) ∈ {x ∈ SD−1 | dgeo(unit (ft),x) ≤ θ} | ft
}

(47)

=
1

AD−1
σD−1

({
x ∈ SD−1 | dgeo(unit (ft),x) ≤ θ

})
︸ ︷︷ ︸

due to Corollary 5.1

(48)

=
1

AD−1

∫ θ

0

(
AD−2 sinD−2 (φ)

)
dφ (49)

=
AD−2

AD−1

∫ θ

0
sinD−2 (φ) dφ . (50)

Then

Pr {∠ (ft,fs) ≤ θ}

=

∫
RD

(Pr {∠ (ft,fs) ≤ θ | ft} · p(ft)) dµD(ft) (51)

=

∫
RD

((
AD−2

AD−1

∫ θ

0
sinD−2 (φ) dφ

)
· p(ft)

)
dµD(ft)

(52)

=

(∫
RD

(p(ft)) dµD(ft)

)(
AD−2

AD−1

∫ θ

0
sinD−2 (φ) dφ

)
(53)

=
AD−2

AD−1

∫ θ

0
sinD−2 (φ) dφ . (54)

Thus

p{∠ (ft,fs) = θ} =
d

dθ
Pr {∠ (ft,fs) ≤ θ} (55)

=
d

dθ

(
AD−2

AD−1

∫ θ

0
sinD−2 (φ) dφ

)
(56)

=
AD−2

AD−1

d

dθ

∫ θ

0
sinD−2 (φ) dφ (57)

=
AD−2

AD−1
sinD−2 (θ) . (58)

�

C.1 Proof of Claim 3

Proof. First, let us inspect the properties of the lj’s, which can
be rewritten as

lj =

{
− log (pj) if hj = 1 ,

− log (1− pj) if hj = 0 .
(59)

Note that log 2 = − log
(
1− 1

2

)
. Thus lj < log 2 if and only if

p[j]

{
> 1

2 if h[j] = 1 ,

< 1
2 if h[j] = 0 ,

(60)

which is equivalent to

wT
j fs

{
> 0 if wT

j ft > 0 ,

< 0 if wT
j ft ≤ 0 .

(61)

In other words,

unit (wj) ∈ Lft,fs , (62)

where

Lft,fs =
{
x ∈ SD−1 |

((
xTfs > 0

)
∧
(
xTft > 0

))}
∨{

x ∈ SD−1 |
((

xTfs < 0
)
∧
(
xTft ≤ 0

))}
(63)

is the union of two lunes.
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Applying Corollary 5.1, we have

Pr {unit (wj) ∈ Lft,fs | ft,fs}

=
σD−1(Lft,fs)

AD−1
(64)

=
2

AD−1

∫ π
2

0

π − ∠ (ft,fs)

2π
A1 cos (θ)AD−3 sinD−3 (θ)dθ︸ ︷︷ ︸

SD−1 viewed as a union of tori
(65)

=
π − ∠ (ft,fs)

πAD−1

∫ π
2

0

(
A1 cos (θ) ·AD−3 sinD−3 (θ)

)
dθ

(66)

=
π − ∠ (ft,fs)

πAD−1
AD−1 (67)

=1− ∠ (ft,fs)

π
. (68)

Thus

Pr {unit (wj) ∈ Lft,fs | ∠ (ft,fs) = θ}

=

∫
RD×D

(Pr {unit (wj) ∈ Lft,fs | ft,fs}·

p(ft,fs | ∠ (ft,fs) = θ))dµD×D(ft,fs) (69)

=

∫
RD×D

(
1− θ

π

)
· p(ft,fs | ∠ (ft,fs) = θ)dµD×D(ft,fs)

(70)

=

(
1− θ

π

)∫
RD×D

p(ft,fs | ∠ (ft,fs) = θ) dµD×D(ft,fs)

(71)

=1− θ

π
. (72)

�

C.2 Proof of Claim 4

Proof.

Pr


N∧
j=1

(lj < log 2) | ∠ (ft,fs) = θ


=

N∏
j=1

Pr {lj < log 2 | ∠ (ft,fs) = θ}

︸ ︷︷ ︸
due to conditional independence of lj ’s

(73)

=

(
1− θ

π

)N
︸ ︷︷ ︸

due to Claim 3

. (74)

Applying the Bayes’ rule, the conditional probability density of
∠ (ft,fs) can be derived as

p

∠ (ft,fs) = θ |
N∧
j=1

(lj < log 2)


=
p
{∧N

j=1 (lj < log 2) | ∠ (ft,fs) = θ
}
· p{∠ (ft,fs) = θ}

p
{∧N

j=1 (lj < log 2)
}

(75)

=
p
{∧N

j=1 (lj < log 2)|∠ (ft,fs) = θ
}
p{∠ (ft,fs) = θ}∫ π

0 p
{∧N

j=1 (lj < log 2)|∠ (ft,fs) = θ
}
p{∠ (ft,fs) = θ}dθ

(76)

=

(
1− θ

π

)N · AD−2

AD−1
sinD−2 (θ)∫ π

0

((
1− θ

π

)N · AD−2

AD−1
sinD−2 (θ)

)
dθ︸ ︷︷ ︸

due to Equation 73 and Corollary 6

(77)

=

(
1− θ

π

)N · sinD−2 (θ)∫ π
0

((
1− θ

π

)N · sinD−2 (θ)
)

dθ
. (78)

Thus

Pr

∠ (ft,fs) < ε |
N∧
j=1

(lj < log 2)


=

∫ ε

0
p

∠ (ft,fs) = θ |
N∧
j=1

(lj < log 2)

dθ (79)

=

∫ ε

0

 (
1− θ

π

)N · sinD−2 (θ)∫ π
0

((
1− θ

π

)N · sinD−2 (θ)
)

dθ


︸ ︷︷ ︸

due to Equation 75

dθ (80)

=

∫ ε
0

((
1− θ

π

)N · sinD−2 (θ)
)

dθ∫ π
0

((
1− θ

π

)N · sinD−2 (θ)
)

dθ
. (81)
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